Internet Engineering Task Force (IETF) S. Zhao Request for Comments: 9328 Intel Category: Standards Track S. Wenger ISSN: 2070-1721 Tencent Y. Sanchez Fraunhofer HHI Y.-K. Wang Bytedance Inc. M. M Hannuksela Nokia Technologies December 2022 RTP Payload Format for Versatile Video Coding (VVC) Abstract This memo describes an RTP payload format for the Versatile Video Coding (VVC) specification, which was published as both ITU-T Recommendation H.266 and ISO/IEC International Standard 23090-3. VVC was developed by the Joint Video Experts Team (JVET). The RTP payload format allows for packetization of one or more Network Abstraction Layer (NAL) units in each RTP packet payload, as well as fragmentation of a NAL unit into multiple RTP packets. The payload format has wide applicability in videoconferencing, Internet video streaming, and high-bitrate entertainment-quality video, among other applications. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9328. Copyright Notice Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction 1.1. Overview of the VVC Codec 1.1.1. Coding-Tool Features (Informative) 1.1.2. Systems and Transport Interfaces (Informative) 1.1.3. High-Level Picture Partitioning (Informative) 1.1.4. NAL Unit Header 1.2. Overview of the Payload Format 2. Conventions 3. Definitions and Abbreviations 3.1. Definitions 3.1.1. Definitions from the VVC Specification 3.1.2. Definitions Specific to This Memo 3.2. Abbreviations 4. RTP Payload Format 4.1. RTP Header Usage 4.2. Payload Header Usage 4.3. Payload Structures 4.3.1. Single NAL Unit Packets 4.3.2. Aggregation Packets (APs) 4.3.3. Fragmentation Units 4.4. Decoding Order Number 5. Packetization Rules 6. De-packetization Process 7. Payload Format Parameters 7.1. Media Type Registration 7.2. Optional Parameters Definition 7.3. SDP Parameters 7.3.1. Mapping of Payload Type Parameters to SDP 7.3.2. Usage with SDP Offer/Answer Model 7.3.3. Multicast 7.3.4. Usage in Declarative Session Descriptions 7.3.5. Considerations for Parameter Sets 8. Use with Feedback Messages 8.1. Picture Loss Indication (PLI) 8.2. Full Intra Request (FIR) 9. Security Considerations 10. Congestion Control 11. IANA Considerations 12. References 12.1. Normative References 12.2. Informative References Acknowledgements Authors' Addresses 1. Introduction The Versatile Video Coding specification was formally published as both ITU-T Recommendation H.266 [VVC] and ISO/IEC International Standard 23090-3 [ISO23090-3]. VVC is reported to provide significant coding efficiency gains over High Efficiency Video Coding [HEVC], also known as H.265, and other earlier video codecs. This memo specifies an RTP payload format for VVC. It shares its basic design with the NAL-unit-based RTP payload formats of Advanced Video Coding (AVC) [RFC6184], Scalable Video Coding (SVC) [RFC6190], and High Efficiency Video Coding (HEVC) [RFC7798], as well as their respective predecessors. With respect to design philosophy, security, congestion control, and overall implementation complexity, it has similar properties to those earlier payload format specifications. This is a conscious choice, as at least [RFC6184] is widely deployed and generally known in the relevant implementer communities. Certain scalability-related mechanisms known from [RFC6190] were incorporated into this document, as VVC version 1 supports temporal, spatial, and signal-to-noise ratio (SNR) scalability. 1.1. Overview of the VVC Codec VVC and HEVC share a similar hybrid video codec design. In this memo, we provide a very brief overview of those features of VVC that are, in some form, addressed by the payload format specified herein. Implementers have to read, understand, and apply the ITU-T/ISO/IEC specifications pertaining to VVC to arrive at interoperable, well- performing implementations. Conceptually, both VVC and HEVC include a Video Coding Layer (VCL), which is often used to refer to the coding-tool features, and a NAL, which is often used to refer to the systems and transport interface aspects of the codecs. 1.1.1. Coding-Tool Features (Informative) Coding-tool features are described below with occasional reference to the coding-tool set of HEVC, which is well known in the community. Similar to earlier hybrid-video-coding-based standards, including HEVC, the following basic video coding design is employed by VVC. A prediction signal is first formed by either intra- or motion- compensated prediction, and the residual (the difference between the original and the prediction) is then coded. The gains in coding efficiency are achieved by redesigning and improving almost all parts of the codec over earlier designs. In addition, VVC includes several tools to make the implementation on parallel architectures easier. Finally, VVC includes temporal, spatial, and SNR scalability, as well as multiview coding support. Coding blocks and transform structure Among major coding-tool differences between HEVC and VVC, one of the important improvements is the more flexible coding tree structure in VVC, i.e., multi-type tree. In addition to quadtree, binary and ternary trees are also supported, which contributes significant improvement in coding efficiency. Moreover, the maximum size of a coding tree unit (CTU) is increased from 64x64 to 128x128. To improve the coding efficiency of chroma signal, luma-chroma-separated trees at CTU level may be employed for intra slices. The square transforms in HEVC are extended to non-square transforms for rectangular blocks resulting from binary and ternary tree splits. Besides, VVC supports multiple transform sets (MTSs), including DCT-2, DST-7, and DCT-8, as well as the non-separable secondary transform. The transforms used in VVC can have different sizes with support for larger transform sizes. For DCT-2, the transform sizes range from 2x2 to 64x64, and for DST-7 and DCT-8, the transform sizes range from 4x4 to 32x32. In addition, VVC also support sub-block transform for both intra- and inter-coded blocks. For intra-coded blocks, intra sub- partitioning (ISP) may be used to allow sub-block-based intra prediction and transform. For inter blocks, sub-block transform may be used assuming that only a part of an inter block has non- zero transform coefficients. Entropy coding Similar to HEVC, VVC uses a single entropy-coding engine, which is based on context adaptive binary arithmetic coding [CABAC] but with the support of multi-window sizes. The window sizes can be initialized differently for different context models. Due to such a design, it has more efficient adaptation speed and better coding efficiency. A joint chroma residual coding scheme is applied to further exploit the correlation between the residuals of two color components. In VVC, different residual coding schemes are applied for regular transform coefficients and residual samples generated using transform-skip mode. In-loop filtering VVC has more feature support in loop filters than HEVC. The deblocking filter in VVC is similar to HEVC but operates at a smaller grid. After deblocking and sample adaptive offset (SAO), an adaptive loop filter (ALF) may be used. As a Wiener filter, ALF reduces distortion of decoded pictures. Besides, VVC introduces a new module called luma mapping with chroma scaling to fully utilize the dynamic range of signal so that rate-distortion performance of both Standard Dynamic Range (SDR) and High Dynamic Range (HDR) content is improved. Motion prediction and coding Compared to HEVC, VVC introduces several improvements in this area. First, there is the adaptive motion vector resolution (AMVR), which can save bit cost for motion vectors by adaptively signaling motion vector resolution. Then, the affine motion compensation is included to capture complicated motion-like zooming and rotation. Meanwhile, prediction refinement with the optical flow (PROF) with affine mode is further deployed to mimic affine motion at the pixel level. Thirdly, the decoder-side motion vector refinement (DMVR) is a method to derive the motion vector at the decoder side based on block matching so that fewer bits may be spent on motion vectors. Bidirectional optical flow (BDOF) is a similar method to PROF. BDOF adds a sample-wise offset at the 4x4 sub-block level that is derived with equations based on gradients of the prediction samples and a motion difference relative to coding-unit (CU) motion vectors. Furthermore, merge with motion vector difference (MMVD) is a special mode that further signals a limited set of motion vector differences on top of merge mode. In addition to MMVD, there are another three types of special merge modes, i.e., sub-block merge, triangle, and combined intra/inter prediction (CIIP). The sub- block merge list includes one candidate of sub-block temporal motion vector prediction (SbTMVP) and up to four candidates of affine motion vectors. Triangle is based on triangular block motion compensation. CIIP combines intra and inter predictions with weighting. Adaptive weighting may be employed with a block- level tool called bi-prediction with CU-based weighting (BCW), which provides more flexibility than in HEVC. Intra prediction and intra coding To capture the diversified local image texture directions with finer granularity, VVC supports 65 angular directions instead of 33 directions in HEVC. The intra mode coding is based on a 6- most-probable-modes scheme, and the 6 most probable modes are derived using the neighboring intra prediction directions. In addition, to deal with the different distributions of intra prediction angles for different block aspect ratios, a wide-angle- intra-prediction (WAIP) scheme is applied in VVC by including intra prediction angles beyond those present in HEVC. Unlike HEVC, which only allows using the most adjacent line of reference samples for intra prediction, VVC also allows using two further reference lines, known as multi-reference-line (MRL) intra prediction. The additional reference lines can be only used for the 6 most probable intra prediction modes. To capture the strong correlation between different color components, in VVC, a cross- component linear mode (CCLM) is utilized, which assumes a linear relationship between the luma sample values and their associated chroma samples. For intra prediction, VVC also applies a position-dependent prediction combination (PDPC) for refining the prediction samples closer to the intra prediction block boundary. Matrix-based intra prediction (MIP) modes are also used in VVC, which generates an up to 8x8 intra prediction block using a weighted sum of downsampled neighboring reference samples, and the weights are hard-coded constants. Other coding-tool features VVC introduces dependent quantization (DQ) to reduce quantization error by state-based switching between two quantizers. 1.1.2. Systems and Transport Interfaces (Informative) VVC inherits the basic systems and transport interface designs from HEVC and AVC. These include the NAL-unit-based syntax structure, the hierarchical syntax and data unit structure, the supplemental enhancement information (SEI) message mechanism, and the video buffering model based on the hypothetical reference decoder (HRD). The scalability features of VVC are conceptually similar to the scalable extension of HEVC, known as SHVC. The hierarchical syntax and data unit structure consists of parameter sets at various levels (i.e., decoder, sequence (pertaining to all), sequence (pertaining to a single), and picture), picture-level header parameters, slice-level header parameters, and lower-level parameters. A number of key components that influenced the network abstraction layer design of VVC, as well as this memo, are described below Decoding capability information The decoding capability information (DCI) includes parameters that stay constant for the lifetime of a VVC bitstream in the duration of a video conference, continuous video stream, and similar, i.e., any video that is processed by a decoder between setup and teardown. For streaming, the requirement of constant parameters pertains through splicing. Such information includes profile, level, and sub-profile information to determine a maximum capability interop point that is guaranteed to never be exceeded, even if splicing of video sequences occurs within a session. It further includes constraint fields (most of which are flags), which can optionally be set to indicate that the video bitstream will be constrained in the use of certain features, as indicated by the values of those fields. With this, a bitstream can be labeled as not using certain tools, which allows, among other things, for resource allocation in a decoder implementation. Video parameter set The video parameter set (VPS) pertains to one or more coded video sequences (CVSs) of multiple layers covering the same range of access units and includes, among other information, decoding dependency expressed as information for reference-picture-list construction of enhancement layers. The VPS provides a "big picture" of a scalable sequence, including what types of operation points are provided; the profile, tier, and level of the operation points; and some other high-level properties of the bitstream that can be used as the basis for session negotiation and content selection, etc. One VPS may be referenced by one or more sequence parameter sets. Sequence parameter set The sequence parameter set (SPS) contains syntax elements pertaining to a coded layer video sequence (CLVS), which is a group of pictures belonging to the same layer, starting with a random access point, and followed by pictures that may depend on each other until the next random access point picture. In MPEG-2, the equivalent of a CVS was a group of pictures (GOP), which normally started with an I frame and was followed by P and B frames. While more complex in its options of random access points, VVC retains this basic concept. One remarkable difference of VVC is that a CLVS may start with a Gradual Decoding Refresh (GDR) picture without requiring presence of traditional random access points in the bitstream, such as instantaneous decoding refresh (IDR) or clean random access (CRA) pictures. In many TV- like applications, a CVS contains a few hundred milliseconds to a few seconds of video. In video conferencing (without switching Multipoint Control Units (MCUs) involved), a CVS can be as long in duration as the whole session. Picture and adaptation parameter set The picture parameter set (PPS) and the adaptation parameter set (APS) carry information pertaining to zero or more pictures and zero or more slices, respectively. The PPS contains information that is likely to stay constant from picture to picture, at least for pictures for a certain type, whereas the APS contains information, such as adaptive loop filter coefficients, that are likely to change from picture to picture or even within a picture. A single APS is referenced by all slices of the same picture if that APS contains information about luma mapping with chroma scaling (LMCS) or a scaling list. Different APSs containing ALF parameters can be referenced by slices of the same picture. Picture header A picture header (PH) contains information that is common to all slices that belong to the same picture. Being able to send that information as a separate NAL unit when pictures are split into several slices allows for saving bitrate, compared to repeating the same information in all slices. However, there might be scenarios where low-bitrate video is transmitted using a single slice per picture. Having a separate NAL unit to convey that information incurs in an overhead for such scenarios. For such scenarios, the picture header syntax structure is directly included in the slice header, instead of its own NAL unit. The mode of the picture header syntax structure being included in its own NAL unit or not can only be switched on/off for an entire CLVS and can only be switched off when, in the entire CLVS, each picture contains only one slice. Profile, tier, and level The profile, tier, and level syntax structures in DCI, VPS, and SPS contain profile, tier, and level information for all layers that refer to the DCI, for layers associated with one or more output layer sets specified by the VPS, and for any layer that refers to the SPS, respectively. Sub-profiles Within the VVC specification, a sub-profile is a 32-bit number, coded according to ITU-T Recommendation T.35, that does not carry semantics. It is carried in the profile_tier_level structure and hence is (potentially) present in the DCI, VPS, and SPS. External registration bodies can register a T.35 codepoint with ITU-T registration authorities and associate with their registration a description of bitstream restrictions beyond the profiles defined by ITU-T and ISO/IEC. This would allow encoder manufacturers to label the bitstreams generated by their encoder as complying with such sub-profile. It is expected that upstream standardization organizations (such as Digital Video Broadcasting (DVB) and Advanced Television Systems Committee (ATSC)), as well as walled- garden video services, will take advantage of this labeled system. In contrast to "normal" profiles, it is expected that sub-profiles may indicate encoder choices traditionally left open in the (decoder-centric) video coding specifications, such as GOP structures, minimum/maximum Quantizer Parameter (QP) values, and the mandatory use of certain tools or SEI messages. General constraint fields The profile_tier_level structure carries a considerable number of constraint fields (most of which are flags), which an encoder can use to indicate to a decoder that it will not use a certain tool or technology. They were included in reaction to a perceived market need to label a bitstream as not exercising a certain tool that has become commercially unviable. Temporal scalability support VVC includes support of temporal scalability, by the inclusion of the signaling of TemporalId in the NAL unit header, the restriction that pictures of a particular temporal sublayer cannot be used for inter prediction reference by pictures of a lower temporal sublayer, the sub-bitstream extraction process, and the requirement that each sub-bitstream extraction output be a conforming bitstream. Media-Aware Network Elements (MANEs) can utilize the TemporalId in the NAL unit header for stream adaptation purposes based on temporal scalability. Reference picture resampling (RPR) In AVC and HEVC, the spatial resolution of pictures cannot change unless a new sequence using a new SPS starts, with an intra random access point (IRAP) picture. VVC enables picture resolution change within a sequence at a position without encoding an IRAP picture, which is always intra coded. This feature is sometimes referred to as reference picture resampling (RPR), as the feature needs resampling of a reference picture used for inter prediction when that reference picture has a different resolution than the current picture being decoded. RPR allows resolution change without the need of coding an IRAP picture and hence avoids a momentary bit rate spike caused by an IRAP picture in streaming or video conferencing scenarios, e.g., to cope with network condition changes. RPR can also be used in application scenarios wherein zooming of the entire video region or some region of interest is needed. Spatial, SNR, and multiview scalability VVC includes support for spatial, SNR, and multiview scalability. Scalable video coding is widely considered to have technical benefits and enrich services for various video applications. Until recently, however, the functionality has not been included in the first version of specifications of the video codecs. In VVC, however, all those forms of scalability are supported in the first version of VVC natively through the signaling of the nuh_layer_id in the NAL unit header, the VPS that associates layers with the given nuh_layer_id to each other, reference picture selection, reference picture resampling for spatial scalability, and a number of other mechanisms not relevant for this memo. Spatial scalability With the existence of reference picture resampling (RPR), the additional burden for scalability support is just a modification of the high-level syntax (HLS). The inter-layer prediction is employed in a scalable system to improve the coding efficiency of the enhancement layers. In addition to the spatial and temporal motion-compensated predictions that are available in a single-layer codec, the inter-layer prediction in VVC uses the possibly resampled video data of the reconstructed reference picture from a reference layer to predict the current enhancement layer. The resampling process for inter-layer prediction, when used, is performed at the block level, reusing the existing interpolation process for motion compensation in single-layer coding. It means that no additional resampling process is needed to support spatial scalability. SNR scalability SNR scalability is similar to spatial scalability except that the resampling factors are 1:1. In other words, there is no change in resolution, but there is inter-layer prediction. Multiview scalability The first version of VVC also supports multiview scalability, wherein a multi-layer bitstream carries layers representing multiple views, and one or more of the represented views can be output at the same time. SEI messages Supplemental enhancement information (SEI) messages are information in the bitstream that do not influence the decoding process as specified in the VVC specification but address issues of representation/rendering of the decoded bitstream, label the bitstream for certain applications, and other, similar tasks. The overall concept of SEI messages and many of the messages themselves has been inherited from the AVC and HEVC specifications. Except for the SEI messages that affect the specification of the hypothetical reference decoder (HRD), other SEI messages for use in the VVC environment, which are generally useful also in other video coding technologies, are not included in the main VVC specification but in a companion specification [VSEI]. 1.1.3. High-Level Picture Partitioning (Informative) VVC inherited the concept of tiles and wavefront parallel processing (WPP) from HEVC, with some minor to moderate differences. The basic concept of slices was kept in VVC but designed in an essentially different form. VVC is the first video coding standard that includes subpictures as a feature, which provides the same functionality as HEVC motion-constrained tile sets (MCTSs) but designed differently to have better coding efficiency and to be friendlier for usage in application systems. More details of these differences are described below. Tiles and WPP Same as in HEVC, a picture can be split into tile rows and tile columns in VVC, in-picture prediction across tile boundaries is disallowed, etc. However, the syntax for signaling of tile partitioning has been simplified by using a unified syntax design for both the uniform and the non-uniform mode. In addition, signaling of entry point offsets for tiles in the slice header is optional in VVC, while it is mandatory in HEVC. The WPP design in VVC has two differences compared to HEVC: i) the CTU row delay is reduced from two CTUs to one CTU, and ii) signaling of entry point offsets for WPP in the slice header is optional in VVC while it is mandatory in HEVC. Slices In VVC, the conventional slices based on CTUs (as in HEVC) or macroblocks (as in AVC) have been removed. The main reasoning behind this architectural change is as follows. The advances in video coding since 2003 (the publication year of AVC v1) have been such that slice-based error concealment has become practically impossible due to the ever-increasing number and efficiency of in- picture and inter-picture prediction mechanisms. An error- concealed picture is the decoding result of a transmitted coded picture for which there is some data loss (e.g., loss of some slices) of the coded picture or a reference picture, as at least some part of the coded picture is not error-free (e.g., that reference picture was an error-concealed picture). For example, when one of the multiple slices of a picture is lost, it may be error-concealed using an interpolation of the neighboring slices. While advanced video coding prediction mechanisms provide significantly higher coding efficiency, they also make it harder for machines to estimate the quality of an error-concealed picture, which was already a hard problem with the use of simpler prediction mechanisms. Advanced in-picture prediction mechanisms also cause the coding efficiency loss due to splitting a picture into multiple slices to be more significant. Furthermore, network conditions become significantly better while, at the same time, techniques for dealing with packet losses have become significantly improved. As a result, very few implementations have recently used slices for maximum-transmission-unit-size matching. Instead, substantially all applications where low-delay error resilience is required (e.g., video telephony and video conferencing) rely on system/transport-level error resilience (e.g., retransmission or forward error correction) and/or picture- based error resilience tools (e.g., feedback-based error resilience, insertion of IRAPs, scalability with a higher protection level of the base layer, and so on). Considering all the above, nowadays, it is very rare that a picture that cannot be correctly decoded is passed to the decoder, and when such a rare case occurs, the system can afford to wait for an error-free picture to be decoded and available for display without resulting in frequent and long periods of picture freezing seen by end users. Slices in VVC have two modes: rectangular slices and raster-scan slices. The rectangular slice, as indicated by its name, covers a rectangular region of the picture. Typically, a rectangular slice consists of several complete tiles. However, it is also possible that a rectangular slice is a subset of a tile and consists of one or more consecutive, complete CTU rows within a tile. A raster- scan slice consists of one or more complete tiles in a tile raster-scan order; hence, the region covered by raster-scan slices need not but could have a non-rectangular shape, but it may also happen to have the shape of a rectangle. The concept of slices in VVC is therefore strongly linked to or based on tiles instead of CTUs (as in HEVC) or macroblocks (as in AVC). Subpictures VVC is the first video coding standard that includes the support of subpictures as a feature. Each subpicture consists of one or more complete rectangular slices that collectively cover a rectangular region of the picture. A subpicture may be either specified to be extractable (i.e., coded independently of other subpictures of the same picture and of earlier pictures in decoding order) or not extractable. Regardless of whether a subpicture is extractable or not, the encoder can control whether in-loop filtering (including deblocking, SAO, and ALF) is applied across the subpicture boundaries individually for each subpicture. Functionally, subpictures are similar to the motion-constrained tile sets (MCTSs) in HEVC. They both allow independent coding and extraction of a rectangular subset of a sequence of coded pictures for use cases like viewport-dependent 360-degree video streaming optimization and region of interest (ROI) applications. There are several important design differences between subpictures and MCTSs. First, the subpictures featured in VVC allow motion vectors of a coding block to point outside of the subpicture, even when the subpicture is extractable by applying sample padding at the subpicture boundaries, in this case, similarly as at picture boundaries. Second, additional changes were introduced for the selection and derivation of motion vectors in the merge mode and in the decoder-side motion vector refinement process of VVC. This allows higher coding efficiency compared to the non-normative motion constraints applied at the encoder-side for MCTSs. Third, rewriting of slice headers (SHs) (and PH NAL units, when present) is not needed when extracting one or more extractable subpictures from a sequence of pictures to create a sub-bitstream that is a conforming bitstream. In sub-bitstream extractions based on HEVC MCTSs, rewriting of SHs is needed. Note that, in both HEVC MCTSs extraction and VVC subpictures extraction, rewriting of SPSs and PPSs is needed. However, typically, there are only a few parameter sets in a bitstream, whereas each picture has at least one slice; therefore, rewriting of SHs can be a significant burden for application systems. Fourth, slices of different subpictures within a picture are allowed to have different NAL unit types. Fifth, VVC specifies HRD and level definitions for subpicture sequences, thus the conformance of the sub-bitstream of each extractable subpicture sequence can be ensured by encoders. 1.1.4. NAL Unit Header VVC maintains the NAL unit concept of HEVC with modifications. VVC uses a two-byte NAL unit header, as shown in Figure 1. The payload of a NAL unit refers to the NAL unit excluding the NAL unit header. +---------------+---------------+ |0|1|2|3|4|5|6|7|0|1|2|3|4|5|6|7| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |F|Z| LayerID | Type | TID | +---------------+---------------+ Figure 1: The Structure of the VVC NAL Unit Header The semantics of the fields in the NAL unit header are as specified in VVC and described briefly below for convenience. In addition to the name and size of each field, the corresponding syntax element name in VVC is also provided. F: 1 bit forbidden_zero_bit. This field is required to be zero in VVC. Note that the inclusion of this bit in the NAL unit header was to enable transport of VVC video over MPEG-2 transport systems (avoidance of start code emulations) [MPEG2S]. In the context of this payload format, the value 1 may be used to indicate a syntax violation, e.g., for a NAL unit resulted from aggregating a number of fragmented units of a NAL unit but missing the last fragment, as described in the last sentence of Section 4.3.3. Z: 1 bit nuh_reserved_zero_bit. This field is required to be zero in VVC, and reserved for future extensions by ITU-T and ISO/IEC. This memo does not overload the "Z" bit for local extensions a) because overloading the "F" bit is sufficient and b) in order to preserve the usefulness of this memo to possible future versions of [VVC]. LayerId: 6 bits nuh_layer_id. This field identifies the layer a NAL unit belongs to, wherein a layer may be, e.g., a spatial scalable layer, a quality scalable layer, a layer containing a different view, etc. Type: 5 bits nal_unit_type. This field specifies the NAL unit type, as defined in Table 5 of [VVC]. For a reference of all currently defined NAL unit types and their semantics, please refer to Section 7.4.2.2 in [VVC]. TID: 3 bits nuh_temporal_id_plus1. This field specifies the temporal identifier of the NAL unit plus 1. The value of TemporalId is equal to TID minus 1. A TID value of 0 is illegal to ensure that there is at least one bit in the NAL unit header equal to 1 in order to enable the consideration of start code emulations in the NAL unit payload data independent of the NAL unit header. 1.2. Overview of the Payload Format This payload format defines the following processes required for transport of VVC coded data over RTP [RFC3550]: * usage of the RTP header with this payload format * packetization of VVC coded NAL units into RTP packets using three types of payload structures: a single NAL unit packet, aggregation packet, and fragment unit * transmission of VVC NAL units of the same bitstream within a single RTP stream * media type parameters to be used with the Session Description Protocol (SDP) [RFC8866] * usage of RTCP feedback messages 2. Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Definitions and Abbreviations 3.1. Definitions This document uses the terms and definitions of VVC. Section 3.1.1 lists relevant definitions from [VVC] for convenience. Section 3.1.2 provides definitions specific to this memo. All the used terms and definitions in this memo are verbatim copies from the [VVC] specification. 3.1.1. Definitions from the VVC Specification Access unit (AU): A set of PUs that belong to different layers and contain coded pictures associated with the same time for output from the DPB. Adaptation parameter set (APS): A syntax structure containing syntax elements that apply to zero or more slices as determined by zero or more syntax elements found in slice headers. Bitstream: A sequence of bits, in the form of a NAL unit stream or a byte stream, that forms the representation of a sequence of AUs forming one or more coded video sequences (CVSs). Coded picture: A coded representation of a picture comprising VCL NAL units with a particular value of nuh_layer_id within an AU and containing all CTUs of the picture. Clean random access (CRA) PU: A PU in which the coded picture is a CRA picture. Clean random access (CRA) picture: An IRAP picture for which each VCL NAL unit has nal_unit_type equal to CRA_NUT. Coded video sequence (CVS): A sequence of AUs that consists, in decoding order, of a CVSS AU, followed by zero or more AUs that are not CVSS AUs, including all subsequent AUs up to but not including any subsequent AU that is a CVSS AU. Coded video sequence start (CVSS) AU: An AU in which there is a PU for each layer in the CVS and the coded picture in each PU is a CLVSS picture. Coded layer video sequence (CLVS): A sequence of PUs with the same value of nuh_layer_id that consists, in decoding order, of a CLVSS PU, followed by zero or more PUs that are not CLVSS PUs, including all subsequent PUs up to but not including any subsequent PU that is a CLVSS PU. Coded layer video sequence start (CLVSS) PU: A PU in which the coded picture is a CLVSS picture. Coded layer video sequence start (CLVSS) picture: A coded picture that is an IRAP picture with NoOutputBeforeRecoveryFlag equal to 1 or a GDR picture with NoOutputBeforeRecoveryFlag equal to 1. Coding Tree Block (CTB): An NxN block of samples for some value of N such that the division of a component into CTBs is a partitioning. Coding tree unit (CTU): A CTB of luma samples, two corresponding CTBs of chroma samples of a picture that has three sample arrays, or a CTB of samples of a monochrome picture or a picture that is coded using three separate colour planes and syntax structures used to code the samples. Coding Unit (CU): A coding block of luma samples, two corresponding coding blocks of chroma samples of a picture that has three sample arrays in the single tree mode, or a coding block of luma samples of a picture that has three sample arrays in the dual tree mode, or two coding blocks of chroma samples of a picture that has three sample arrays in the dual tree mode, or a coding block of samples of a monochrome picture, and syntax structures used to code the samples. Decoding Capability Information (DCI): A syntax structure containing syntax elements that apply to the entire bitstream. Decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output delay specified for the hypothetical reference decoder. Gradual decoding refresh (GDR) picture: A picture for which each VCL NAL unit has nal_unit_type equal to GDR_NUT. Instantaneous decoding refresh (IDR) PU: A PU in which the coded picture is an IDR picture. Instantaneous decoding refresh (IDR) picture: An IRAP picture for which each VCL NAL unit has nal_unit_type equal to IDR_W_RADL or IDR_N_LP. Intra random access point (IRAP) AU: An AU in which there is a PU for each layer in the CVS and the coded picture in each PU is an IRAP picture. Intra random access point (IRAP) PU: A PU in which the coded picture is an IRAP picture. Intra random access point (IRAP) picture: A coded picture for which all VCL NAL units have the same value of nal_unit_type in the range of IDR_W_RADL to CRA_NUT, inclusive. Layer: A set of VCL NAL units that all have a particular value of nuh_layer_id and the associated non-VCL NAL units. Network abstraction layer (NAL) unit: A syntax structure containing an indication of the type of data to follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes. Network abstraction layer (NAL) unit stream: A sequence of NAL units. Output Layer Set (OLS): A set of layers for which one or more layers are specified as the output layers. Operation point (OP): A temporal subset of an OLS, identified by an OLS index and a highest value of TemporalId. Picture Header (PH): A syntax structure containing syntax elements that apply to all slices of a coded picture. Picture parameter set (PPS): A syntax structure containing syntax elements that apply to zero or more entire coded pictures as determined by a syntax element found in each slice header. Picture unit (PU): A set of NAL units that are associated with each other according to a specified classification rule, are consecutive in decoding order, and contain exactly one coded picture. Random access: The act of starting the decoding process for a bitstream at a point other than the beginning of the bitstream. Raw Byte Sequence Payload (RBSP): A syntax structure containing an integer number of bytes that is encapsulated in a NAL unit and is either empty or has the form of a string of data bits containing syntax elements followed by an RBSP stop bit and zero or more subsequent bits equal to 0. Sequence parameter set (SPS): A syntax structure containing syntax elements that apply to zero or more entire CLVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found in each picture header. Slice: An integer number of complete tiles or an integer number of consecutive complete CTU rows within a tile of a picture that are exclusively contained in a single NAL unit. Slice header (SH): A part of a coded slice containing the data elements pertaining to all tiles or CTU rows within a tile represented in the slice. Sublayer: A temporal scalable layer of a temporal scalable bitstream consisting of VCL NAL units with a particular value of the TemporalId variable, and the associated non-VCL NAL units. Subpicture: A rectangular region of one or more slices within a picture. Sublayer representation: A subset of the bitstream consisting of NAL units of a particular sublayer and the lower sublayers. Tile: A rectangular region of CTUs within a particular tile column and a particular tile row in a picture. Tile column: A rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set. Tile row: A rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture. Video coding layer (VCL) NAL unit: A collective term for coded slice NAL units and the subset of NAL units that have reserved values of nal_unit_type that are classified as VCL NAL units in this Specification. 3.1.2. Definitions Specific to This Memo Media-Aware Network Element (MANE): A network element, such as a middlebox, selective forwarding unit, or application-layer gateway that is capable of parsing certain aspects of the RTP payload headers or the RTP payload and reacting to their contents. | Informative note: The concept of a MANE goes beyond normal | routers or gateways in that a MANE has to be aware of the | signaling (e.g., to learn about the payload type mappings of | the media streams), and in that it has to be trusted when | working with Secure RTP (SRTP). The advantage of using | MANEs is that they allow packets to be dropped according to | the needs of the media coding. For example, if a MANE has | to drop packets due to congestion on a certain link, it can | identify and remove those packets whose elimination produces | the least adverse effect on the user experience. After | dropping packets, MANEs must rewrite RTCP packets to match | the changes to the RTP stream, as specified in Section 7 of | [RFC3550]. NAL unit decoding order: A NAL unit order that conforms to the constraints on NAL unit order given in Section 7.4.2.4 in [VVC], follow the order of NAL units in the bitstream. RTP stream (see [RFC7656]): Within the scope of this memo, one RTP stream is utilized to transport a VVC bitstream, which may contain one or more layers, and each layer may contain one or more temporal sublayers. Transmission order: The order of packets in ascending RTP sequence number order (in modulo arithmetic). Within an aggregation packet, the NAL unit transmission order is the same as the order of appearance of NAL units in the packet. 3.2. Abbreviations AU Access Unit AP Aggregation Packet APS Adaptation Parameter Set CTU Coding Tree Unit CVS Coded Video Sequence DPB Decoded Picture Buffer DCI Decoding Capability Information DON Decoding Order Number FIR Full Intra Request FU Fragmentation Unit GDR Gradual Decoding Refresh HRD Hypothetical Reference Decoder IDR Instantaneous Decoding Refresh IRAP Intra Random Access Point MANE Media-Aware Network Element MTU Maximum Transfer Unit NAL Network Abstraction Layer NALU Network Abstraction Layer Unit OLS Output Layer Set PLI Picture Loss Indication PPS Picture Parameter Set RPSI Reference Picture Selection Indication SEI Supplemental Enhancement Information SLI Slice Loss Indication SPS Sequence Parameter Set VCL Video Coding Layer VPS Video Parameter Set 4. RTP Payload Format 4.1. RTP Header Usage The format of the RTP header is specified in [RFC3550] (reprinted as Figure 2 for convenience). This payload format uses the fields of the header in a manner consistent with that specification. The RTP payload (and the settings for some RTP header bits) for aggregation packets and fragmentation units are specified in Sections 4.3.2 and 4.3.3, respectively. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V=2|P|X| CC |M| PT | sequence number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | synchronization source (SSRC) identifier | +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ | contributing source (CSRC) identifiers | | .... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: RTP Header According to RFC 3550 The RTP header information to be set according to this RTP payload format is set as follows: Marker bit (M): 1 bit Set for the last packet, in transmission order, among each set of packets that contain NAL units of one access unit. This is in line with the normal use of the M bit in video formats to allow an efficient playout buffer handling. Payload Type (PT): 7 bits The assignment of an RTP payload type for this new packet format is outside the scope of this document and will not be specified here. The assignment of a payload type has to be performed either through the profile used or in a dynamic way. Sequence Number (SN): 16 bits Set and used in accordance with [RFC3550]. Timestamp: 32 bits The RTP timestamp is set to the sampling timestamp of the content. A 90 kHz clock rate MUST be used. If the NAL unit has no timing properties of its own (e.g., parameter set and SEI NAL units), the RTP timestamp MUST be set to the RTP timestamp of the coded pictures of the access unit in which the NAL unit (according to Section 7.4.2.4 of [VVC]) is included. Receivers MUST use the RTP timestamp for the display process, even when the bitstream contains picture timing SEI messages or decoding unit information SEI messages, as specified in [VVC]. | Informative note: When picture timing SEI messages are | present, the RTP sender is responsible to ensure that the | RTP timestamps are consistent with the timing information | carried in the picture timing SEI messages. Synchronization source (SSRC): 32 bits Used to identify the source of the RTP packets. A single SSRC is used for all parts of a single bitstream. 4.2. Payload Header Usage The first two bytes of the payload of an RTP packet are referred to as the payload header. The payload header consists of the same fields (F, Z, LayerId, Type, and TID) as the NAL unit header shown in Section 1.1.4, irrespective of the type of the payload structure. The TID value indicates (among other things) the relative importance of an RTP packet, for example, because NAL units belonging to higher temporal sublayers are not used for the decoding of lower temporal sublayers. A lower value of TID indicates a higher importance. More important NAL units MAY be better protected against transmission losses than less-important NAL units. 4.3. Payload Structures Three different types of RTP packet payload structures are specified. A receiver can identify the type of an RTP packet payload through the Type field in the payload header. The three different payload structures are as follows: * Single NAL unit packet: Contains a single NAL unit in the payload, and the NAL unit header of the NAL unit also serves as the payload header. This payload structure is specified in Section 4.3.1. * Aggregation Packet (AP): Contains more than one NAL unit within one access unit. This payload structure is specified in Section 4.3.2. * Fragmentation Unit (FU): Contains a subset of a single NAL unit. This payload structure is specified in Section 4.3.3. 4.3.1. Single NAL Unit Packets A single NAL unit packet contains exactly one NAL unit and consists of a payload header, as defined in Table 5 of [VVC] (denoted here as PayloadHdr), following with a conditional 16-bit DONL field (in network byte order), and the NAL unit payload data (the NAL unit excluding its NAL unit header) of the contained NAL unit, as shown in Figure 3. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PayloadHdr | DONL (conditional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | NAL unit payload data | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | :...OPTIONAL RTP padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3: The Structure of a Single NAL Unit Packet The DONL field, when present, specifies the value of the 16 least significant bits of the decoding order number of the contained NAL unit. If sprop-max-don-diff (defined in Section 7.2) is greater than 0, the DONL field MUST be present, and the variable DON for the contained NAL unit is derived as equal to the value of the DONL field. Otherwise (sprop-max-don-diff is equal to 0), the DONL field MUST NOT be present. 4.3.2. Aggregation Packets (APs) Aggregation packets (APs) can reduce packetization overhead for small NAL units, such as most of the non-VCL NAL units, which are often only a few octets in size. An AP aggregates NAL units of one access unit, and it MUST NOT contain NAL units from more than one AU. Each NAL unit to be carried in an AP is encapsulated in an aggregation unit. NAL units aggregated in one AP are included in NAL-unit-decoding order. An AP consists of a payload header, as defined in Table 5 of [VVC] (denoted here as PayloadHdr with Type=28), followed by two or more aggregation units, as shown in Figure 4. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PayloadHdr (Type=28) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | two or more aggregation units | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | :...OPTIONAL RTP padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: The Structure of an Aggregation Packet The fields in the payload header of an AP are set as follows. The F bit MUST be equal to 0 if the F bit of each aggregated NAL unit is equal to zero; otherwise, it MUST be equal to 1. The Type field MUST be equal to 28. The value of LayerId MUST be equal to the lowest value of LayerId of all the aggregated NAL units. The value of TID MUST be the lowest value of TID of all the aggregated NAL units. | Informative note: All VCL NAL units in an AP have the same TID | value since they belong to the same access unit. However, an | AP may contain non-VCL NAL units for which the TID value in the | NAL unit header may be different than the TID value of the VCL | NAL units in the same AP. | Informative note: If a system envisions subpicture-level or | picture-level modifications, for example, by removing | subpictures or pictures of a particular layer, a good design | choice on the sender's side would be to aggregate NAL units | belonging to only the same subpicture or picture of a | particular layer. An AP MUST carry at least two aggregation units and can carry as many aggregation units as necessary; however, the total amount of data in an AP obviously MUST fit into an IP packet, and the size SHOULD be chosen so that the resulting IP packet is smaller than the MTU size in order to avoid IP layer fragmentation. An AP MUST NOT contain the FUs specified in Section 4.3.3. APs MUST NOT be nested, i.e., an AP cannot contain another AP. The first aggregation unit in an AP consists of a conditional 16-bit DONL field (in network byte order), followed by 16 bits of unsigned size information (in network byte order) that indicate the size of the NAL unit in bytes (excluding these two octets but including the NAL unit header), followed by the NAL unit itself, including its NAL unit header, as shown in Figure 5. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : DONL (conditional) | NALU size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NALU size | | +-+-+-+-+-+-+-+-+ NAL unit | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: The Structure of the First Aggregation Unit in an AP | Informative note: The first octet of Figure 5 (indicated by the | first colon) belongs to a previous aggregation unit. It is | depicted to emphasize that aggregation units are octet aligned | only. Similarly, the NAL unit carried in the aggregation unit | can terminate at the octet boundary. The DONL field, when present, specifies the value of the 16 least significant bits of the decoding order number of the aggregated NAL unit. If sprop-max-don-diff is greater than 0, the DONL field MUST be present in an aggregation unit that is the first aggregation unit in an AP, and the variable DON for the aggregated NAL unit is derived as equal to the value of the DONL field, and the variable DON for an aggregation unit that is not the first aggregation unit in an AP- aggregated NAL unit is derived as equal to the DON of the preceding aggregated NAL unit in the same AP plus 1 modulo 65536. Otherwise (sprop-max-don-diff is equal to 0), the DONL field MUST NOT be present in an aggregation unit that is the first aggregation unit in an AP. An aggregation unit that is not the first aggregation unit in an AP will be followed immediately by 16 bits of unsigned size information (in network byte order) that indicate the size of the NAL unit in bytes (excluding these two octets but including the NAL unit header), followed by the NAL unit itself, including its NAL unit header, as shown in Figure 6. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : NALU size | NAL unit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 6: The Structure of an Aggregation Unit That Is Not the First Aggregation Unit in an AP | Informative note: The first octet of Figure 6 (indicated by the | first colon) belongs to a previous aggregation unit. It is | depicted to emphasize that aggregation units are octet aligned | only. Similarly, the NAL unit carried in the aggregation unit | can terminate at the octet boundary. Figure 7 presents an example of an AP that contains two aggregation units, labeled as 1 and 2 in the figure, without the DONL field being present. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RTP Header | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PayloadHdr (Type=28) | NALU 1 Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NALU 1 HDR | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ NALU 1 Data | | . . . | | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . . . | NALU 2 Size | NALU 2 HDR | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NALU 2 HDR | | +-+-+-+-+-+-+-+-+ NALU 2 Data | | . . . | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | :...OPTIONAL RTP padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 7: An Example of an AP Packet Containing Two Aggregation Units without the DONL Field Figure 8 presents an example of an AP that contains two aggregation units, labeled as 1 and 2 in the figure, with the DONL field being present. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RTP Header | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PayloadHdr (Type=28) | NALU 1 DONL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NALU 1 Size | NALU 1 HDR | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | NALU 1 Data . . . | | | + . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : NALU 2 Size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | NALU 2 HDR | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ NALU 2 Data | | | | . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | :...OPTIONAL RTP padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 8: An Example of an AP Containing Two Aggregation Units with the DONL Field 4.3.3. Fragmentation Units Fragmentation Units (FUs) are introduced to enable fragmenting a single NAL unit into multiple RTP packets, possibly without cooperation or knowledge of the [VVC] encoder. A fragment of a NAL unit consists of an integer number of consecutive octets of that NAL unit. Fragments of the same NAL unit MUST be sent in consecutive order with ascending RTP sequence numbers (with no other RTP packets within the same RTP stream being sent between the first and last fragment). When a NAL unit is fragmented and conveyed within FUs, it is referred to as a fragmented NAL unit. APs MUST NOT be fragmented. FUs MUST NOT be nested, i.e., an FU cannot contain a subset of another FU. The RTP timestamp of an RTP packet carrying an FU is set to the NALU- time of the fragmented NAL unit. An FU consists of a payload header as defined in Table 5 of [VVC] (denoted here as PayloadHdr with Type=29), an FU header of one octet, a conditional 16-bit DONL field (in network byte order), and an FU payload (as shown in Figure 9). 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | PayloadHdr (Type=29) | FU header | DONL (cond) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-| | DONL (cond) | | |-+-+-+-+-+-+-+-+ | | FU payload | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | :...OPTIONAL RTP padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 9: The Structure of an FU The fields in the payload header are set as follows. The Type field MUST be equal to 29. The fields F, LayerId, and TID MUST be equal to the fields F, LayerId, and TID, respectively, of the fragmented NAL unit. The FU header consists of an S bit, an E bit, an R bit, and a 5-bit FuType field, as shown in Figure 10. +---------------+ |0|1|2|3|4|5|6|7| +-+-+-+-+-+-+-+-+ |S|E|P| FuType | +---------------+ Figure 10: The Structure of the FU Header The semantics of the FU header fields are as follows: S: 1 bit When set to 1, the S bit indicates the start of a fragmented NAL unit, i.e., the first byte of the FU payload is also the first byte of the payload of the fragmented NAL unit. When the FU payload is not the start of the fragmented NAL unit payload, the S bit MUST be set to 0. E: 1 bit When set to 1, the E bit indicates the end of a fragmented NAL unit, i.e., the last byte of the payload is also the last byte of the fragmented NAL unit. When the FU payload is not the last fragment of a fragmented NAL unit, the E bit MUST be set to 0. P: 1 bit When set to 1, the P bit indicates the last FU of the last VCL NAL unit of a coded picture, i.e., the last byte of the FU payload is also the last byte of the last VCL NAL unit of the coded picture. When the FU payload is not the last fragment of the last VCL NAL unit of a coded picture, the P bit MUST be set to 0. FuType: 5 bits The field FuType MUST be equal to the field Type of the fragmented NAL unit. The DONL field, when present, specifies the value of the 16 least significant bits of the decoding order number of the fragmented NAL unit. If sprop-max-don-diff is greater than 0, and the S bit is equal to 1, the DONL field MUST be present in the FU, and the variable DON for the fragmented NAL unit is derived as equal to the value of the DONL field. Otherwise (sprop-max-don-diff is equal to 0, or the S bit is equal to 0), the DONL field MUST NOT be present in the FU. A non-fragmented NAL unit MUST NOT be transmitted in one FU, i.e., the Start bit and End bit must not both be set to 1 in the same FU header. The FU payload consists of fragments of the payload of the fragmented NAL unit so that, if the FU payloads of consecutive FUs, starting with an FU with the S bit equal to 1 and ending with an FU with the E bit equal to 1, are sequentially concatenated, the payload of the fragmented NAL unit can be reconstructed. The NAL unit header of the fragmented NAL unit is not included as such in the FU payload, but rather the information of the NAL unit header of the fragmented NAL unit is conveyed in the F, LayerId, and TID fields of the FU payload headers of the FUs and the FuType field of the FU header of the FUs. An FU payload MUST NOT be empty. If an FU is lost, the receiver SHOULD discard all following fragmentation units in transmission order, corresponding to the same fragmented NAL unit, unless the decoder in the receiver is known to be prepared to gracefully handle incomplete NAL units. A receiver in an endpoint or in a MANE MAY aggregate the first n-1 fragments of a NAL unit to an (incomplete) NAL unit, even if fragment n of that NAL unit is not received. In this case, the forbidden_zero_bit of the NAL unit MUST be set to 1 to indicate a syntax violation. 4.4. Decoding Order Number For each NAL unit, the variable AbsDon is derived, representing the decoding order number that is indicative of the NAL unit decoding order. Let NAL unit n be the n-th NAL unit in transmission order within an RTP stream. If sprop-max-don-diff is equal to 0, AbsDon[n], the value of AbsDon for NAL unit n, is derived as equal to n. Otherwise (sprop-max-don-diff is greater than 0), AbsDon[n] is derived as follows, where DON[n] is the value of the variable DON for NAL unit n: * If n is equal to 0 (i.e., NAL unit n is the very first NAL unit in transmission order), AbsDon[0] is set equal to DON[0]. * Otherwise (n is greater than 0), the following applies for derivation of AbsDon[n]: If DON[n] == DON[n-1], AbsDon[n] = AbsDon[n-1] If (DON[n] > DON[n-1] and DON[n] - DON[n-1] < 32768), AbsDon[n] = AbsDon[n-1] + DON[n] - DON[n-1] If (DON[n] < DON[n-1] and DON[n-1] - DON[n] >= 32768), AbsDon[n] = AbsDon[n-1] + 65536 - DON[n-1] + DON[n] If (DON[n] > DON[n-1] and DON[n] - DON[n-1] >= 32768), AbsDon[n] = AbsDon[n-1] - (DON[n-1] + 65536 - DON[n]) If (DON[n] < DON[n-1] and DON[n-1] - DON[n] < 32768), AbsDon[n] = AbsDon[n-1] - (DON[n-1] - DON[n]) For any two NAL units (m and n), the following applies: * When AbsDon[n] is greater than AbsDon[m], this indicates that NAL unit n follows NAL unit m in NAL unit decoding order. * When AbsDon[n] is equal to AbsDon[m], the NAL unit decoding order of the two NAL units can be in either order. * When AbsDon[n] is less than AbsDon[m], this indicates that NAL unit n precedes NAL unit m in decoding order. | Informative note: When two consecutive NAL units in the NAL | unit decoding order have different values of AbsDon, the | absolute difference between the two AbsDon values may be | greater than or equal to 1. | Informative note: There are multiple reasons to allow for the | absolute difference of the values of AbsDon for two consecutive | NAL units in the NAL unit decoding order to be greater than | one. An increment by one is not required, as at the time of | associating values of AbsDon to NAL units, it may not be known | whether all NAL units are to be delivered to the receiver. For | example, a gateway might not forward VCL NAL units of higher | sublayers or some SEI NAL units when there is congestion in the | network. In another example, the first intra-coded picture of | a pre-encoded clip is transmitted in advance to ensure that it | is readily available in the receiver, and when transmitting the | first intra-coded picture, the originator does not exactly know | how many NAL units will be encoded before the first intra-coded | picture of the pre-encoded clip follows in decoding order. | Thus, the values of AbsDon for the NAL units of the first | intra-coded picture of the pre-encoded clip have to be | estimated when they are transmitted, and gaps in values of | AbsDon may occur. 5. Packetization Rules The following packetization rules apply: * If sprop-max-don-diff is greater than 0, the transmission order of NAL units carried in the RTP stream MAY be different than the NAL unit decoding order. Otherwise (sprop-max-don-diff is equal to 0), the transmission order of NAL units carried in the RTP stream MUST be the same as the NAL unit decoding order. * A NAL unit of a small size SHOULD be encapsulated in an aggregation packet together with one or more other NAL units in order to avoid the unnecessary packetization overhead for small NAL units. For example, non-VCL NAL units, such as access unit delimiters, parameter sets, or SEI NAL units, are typically small and can often be aggregated with VCL NAL units without violating MTU size constraints. * Each non-VCL NAL unit SHOULD, when possible from an MTU size match viewpoint, be encapsulated in an aggregation packet together with its associated VCL NAL unit, as typically a non-VCL NAL unit would be meaningless without the associated VCL NAL unit being available. * For carrying exactly one NAL unit in an RTP packet, a single NAL unit packet MUST be used. 6. De-packetization Process The general concept behind de-packetization is to get the NAL units out of the RTP packets in an RTP stream and pass them to the decoder in the NAL unit decoding order. The de-packetization process is implementation dependent. Therefore, the following description should be seen as an example of a suitable implementation. Other schemes may be used as well, as long as the output for the same input is the same as the process described below. The output is the same when the set of output NAL units and their order are both identical. Optimizations relative to the described algorithms are possible. All normal RTP mechanisms related to buffer management apply. In particular, duplicated or outdated RTP packets (as indicated by the RTP sequence number and the RTP timestamp) are removed. To determine the exact time for decoding, factors, such as a possible intentional delay to allow for proper inter-stream synchronization, MUST be factored in. NAL units with NAL unit type values in the range of 0 to 27, inclusive, may be passed to the decoder. NAL-unit-like structures with NAL unit type values in the range of 28 to 31, inclusive, MUST NOT be passed to the decoder. The receiver includes a receiver buffer, which is used to compensate for transmission delay jitter within individual RTP streams and to reorder NAL units from transmission order to the NAL unit decoding order. In this section, the receiver operation is described under the assumption that there is no transmission delay jitter within an RTP stream. To make a difference from a practical receiver buffer that is also used for compensation of transmission delay jitter, the receiver buffer is hereafter called the de-packetization buffer in this section. Receivers should also prepare for transmission delay jitter, that is, either reserve separate buffers for transmission delay jitter buffering and de-packetization buffering or use a receiver buffer for both transmission delay jitter and de- packetization. Moreover, receivers should take transmission delay jitter into account in the buffering operation, e.g., by additional initial buffering before starting of decoding and playback. The de-packetization process extracts the NAL units from the RTP packets in an RTP stream as follows. When an RTP packet carries a single NAL unit packet, the payload of the RTP packet is extracted as a single NAL unit, excluding the DONL field, i.e., third and fourth bytes, when sprop-max-don-diff is greater than 0. When an RTP packet carries an aggregation packet, several NAL units are extracted from the payload of the RTP packet. In this case, each NAL unit corresponds to the part of the payload of each aggregation unit that follows the NALU size field, as described in Section 4.3.2. When an RTP packet carries a Fragmentation Unit (FU), all RTP packets from the first FU (with the S field equal to 1) of the fragmented NAL unit up to the last FU (with the E field equal to 1) of the fragmented NAL unit are collected. The NAL unit is extracted from these RTP packets by concatenating all FU payloads in the same order as the corresponding RTP packets and appending the NAL unit header with the fields F, LayerId, and TID set to equal the values of the fields F, LayerId, and TID in the payload header of the FUs, respectively, and with the NAL unit type set equal to the value of the field FuType in the FU header of the FUs, as described in Section 4.3.3. When sprop-max-don-diff is equal to 0, the de-packetization buffer size is zero bytes, and the NAL units carried in the single RTP stream are directly passed to the decoder in their transmission order, which is identical to their decoding order. When sprop-max-don-diff is greater than 0, the process described in the remainder of this section applies. There are two buffering states in the receiver: initial buffering and buffering while playing. Initial buffering starts when the reception is initialized. After initial buffering, decoding and playback are started, and the buffering-while-playing mode is used. Regardless of the buffering state, the receiver stores incoming NAL units in reception order into the de-packetization buffer. NAL units carried in RTP packets are stored in the de-packetization buffer individually, and the value of AbsDon is calculated and stored for each NAL unit. Initial buffering lasts until the difference between the greatest and smallest AbsDon values of the NAL units in the de-packetization buffer is greater than or equal to the value of sprop-max-don-diff. After initial buffering, whenever the difference between the greatest and smallest AbsDon values of the NAL units in the de-packetization buffer is greater than or equal to the value of sprop-max-don-diff, the following operation is repeatedly applied until this difference is smaller than sprop-max-don-diff: The NAL unit in the de-packetization buffer with the smallest value of AbsDon is removed from the de-packetization buffer and passed to the decoder. When no more NAL units are flowing into the de-packetization buffer, all NAL units remaining in the de-packetization buffer are removed from the buffer and passed to the decoder in the order of increasing AbsDon values. 7. Payload Format Parameters This section specifies the optional parameters. A mapping of the parameters with Session Description Protocol (SDP) [RFC8866] is also provided for applications that use SDP. Parameters starting with the string "sprop" for stream properties can be used by a sender to provide a receiver with the properties of the stream that is or will be sent. The media sender (and not the receiver) selects whether, and with what values, "sprop" parameters are being sent. This uncommon characteristic of the "sprop" parameters may not be intuitive in the context of some signaling protocol concepts, especially with offer/answer. Please see Section 7.3.2 for guidance specific to the use of sprop parameters in the offer/answer case. 7.1. Media Type Registration The receiver MUST ignore any parameter unspecified in this memo. Type name: video Subtype name: H266 Required parameters: N/A Optional parameters: profile-id, tier-flag, sub-profile-id, interop- constraints, level-id, sprop-sublayer-id, sprop-ols-id, recv- sublayer-id, recv-ols-id, max-recv-level-id, sprop-dci, sprop-vps, sprop-sps, sprop-pps, sprop-sei, max-lsr, max-fps, sprop-max-don- diff, sprop-depack-buf-bytes, depack-buf-cap (refer to Section 7.2 for definitions). Encoding considerations: This type is only defined for transfer via RTP [RFC3550]. Security considerations: See Section 9 of RFC 9328. Interoperability considerations: N/A Published specification: Please refer to RFC 9328 and VVC coding specification [VVC]. Applications that use this media type: Any application that relies on VVC-based video services over RTP Fragment identifier considerations: N/A Additional information: N/A Person & email address to contact for further information: Stephan Wenger (stewe@stewe.org) Intended usage: COMMON Restrictions on usage: N/A Author: See Authors' Addresses section of RFC 9328. Change controller: IETF 7.2. Optional Parameters Definition profile-id, tier-flag, sub-profile-id, interop-constraints, and level-id: These parameters indicate the profile, the tier, the default level, the sub-profile, and some constraints of the bitstream carried by the RTP stream, or a specific set of the profile, the tier, the default level, the sub-profile, and some constraints the receiver supports. The subset of coding tools that may have been used to generate the bitstream or that the receiver supports, as well as some additional constraints, are indicated collectively by profile-id, sub-profile-id, and interop-constraints. | Informative note: There are 128 values of profile-id. The | subset of coding tools identified by profile-id can be | further constrained with up to 255 instances of sub-profile- | id. In addition, 68 bits included in interop-constraints, | which can be extended up to 324 bits, provide means to | further restrict tools from existing profiles. To be able | to support this fine-granular signaling of coding-tool | subsets with profile-id, sub-profile-id, and interop- | constraints, it would be safe to require symmetric use of | these parameters in SDP offer/answer unless recv-ols-id is | included in the SDP answer for choosing one of the layers | offered. The tier is indicated by tier-flag. The default level is indicated by level-id. The tier and the default level specify the limits on values of syntax elements or arithmetic combinations of values of syntax elements that are followed when generating the bitstream or that the receiver supports. In SDP offer/answer, when the SDP answer does not include the recv-ols-id parameter that is less than the sprop-ols-id parameter in the SDP offer, the following applies: * The tier-flag, profile-id, sub-profile-id, and interop- constraints parameters MUST be used symmetrically, i.e., the value of each of these parameters in the offer MUST be the same as that in the answer, either explicitly signaled or implicitly inferred. * The level-id parameter is changeable as long as the highest level indicated by the answer is either equal to or lower than that in the offer. Note that the highest level higher than level-id in the offer for receiving can be included as max- recv-level-id. In SDP offer/answer, when the SDP answer does include the recv- ols-id parameter that is less than the sprop-ols-id parameter in the SDP offer, the set of tier-flag, profile-id, sub-profile-id, interop-constraints, and level-id parameters included in the answer MUST be consistent with that for the chosen output layer set as indicated in the SDP offer, with the exception that the level-id parameter in the SDP answer is changeable as long as the highest level indicated by the answer is either lower than or equal to that in the offer. More specifications of these parameters, including how they relate to syntax elements specified in [VVC], are provided below. profile-id: When profile-id is not present, a value of 1 (i.e., the Main 10 profile) MUST be inferred. When used to indicate properties of a bitstream, profile-id is derived from the general_profile_idc syntax element that applies to the bitstream in an instance of the profile_tier_level( ) syntax structure. VVC bitstreams transported over RTP using the technologies of this memo SHOULD contain only a single profile_tier_level( ) structure in the DCI, unless the sender can assure that a receiver can correctly decode the VVC bitstream, regardless of which profile_tier_level( ) structure contained in the DCI was used for deriving profile-id and other parameters for the SDP offer/answer exchange. As specified in [VVC], a profile_tier_level( ) syntax structure may be contained in an SPS NAL unit, and one or more profile_tier_level( ) syntax structures may be contained in a VPS NAL unit and in a DCI NAL unit. One of the following three cases applies to the container NAL unit of the profile_tier_level( ) syntax structure containing syntax elements used to derive the values of profile-id, tier-flag, level-id, sub-profile-id, or interop-constraints: 1. The container NAL unit is an SPS, the bitstream is a single- layer bitstream, and the profile_tier_level( ) syntax structures in all SPSs referenced by the CVSs in the bitstream have the same values respectively for those profile_tier_level( ) syntax elements. 2. The container NAL unit is a VPS, the profile_tier_level( ) syntax structure is the one in the VPS that applies to the OLS corresponding to the bitstream, and the profile_tier_level( ) syntax structures applicable to the OLS corresponding to the bitstream in all VPSs referenced by the CVSs in the bitstream have the same values respectively for those profile_tier_level( ) syntax elements. 3. The container NAL unit is a DCI NAL unit, and the profile_tier_level( ) syntax structures in all DCI NAL units in the bitstream have the same values respectively for those profile_tier_level( ) syntax elements. [VVC] allows for multiple profile_tier_level( ) structures in a DCI NAL unit, which may contain different values for the syntax elements used to derive the values of profile-id, tier-flag, level-id, sub-profile-id, or interop-constraints in the different entries. However, herein defined is only a single profile-id, tier-flag, level-id, sub-profile-id, or interop-constraints. When signaling these parameters and a DCI NAL unit is present with multiple profile_tier_level( ) structures, these values SHOULD be the same as the first profile_tier_level structure in the DCI, unless the sender has ensured that the receiver can decode the bitstream when a different value is chosen. tier-flag, level-id: The value of tier-flag MUST be in the range of 0 to 1, inclusive. The value of level-id MUST be in the range of 0 to 255, inclusive. If the tier-flag and level-id parameters are used to indicate properties of a bitstream, they indicate the tier and the highest level the bitstream complies with. If the tier-flag and level-id parameters are used for capability exchange, the following applies. If max-recv-level-id is not present, the default level defined by level-id indicates the highest level the codec wishes to support. Otherwise, max-recv- level-id indicates the highest level the codec supports for receiving. For either receiving or sending, all levels that are lower than the highest level supported MUST also be supported. If no tier-flag is present, a value of 0 MUST be inferred; if no level-id is present, a value of 51 (i.e., level 3.1) MUST be inferred. | Informative note: The level values currently defined in the | VVC specification are in the form of "majorNum.minorNum", | and the value of the level-id for each of the levels is | equal to majorNum * 16 + minorNum * 3. It is expected that, | if any levels are defined in the future, the same convention | will be used, but this cannot be guaranteed. When used to indicate properties of a bitstream, the tier-flag and level-id parameters are derived respectively from the syntax element general_tier_flag, and the syntax element general_level_idc or sub_layer_level_idc[j], that apply to the bitstream in an instance of the profile_tier_level( ) syntax structure. If the tier-flag and level-id are derived from the profile_tier_level( ) syntax structure in a DCI NAL unit, the following applies: * tier-flag = general_tier_flag * level-id = general_level_idc Otherwise, if the tier-flag and level-id are derived from the profile_tier_level( ) syntax structure in an SPS or VPS NAL unit, and the bitstream contains the highest sublayer representation in the OLS corresponding to the bitstream, the following applies: * tier-flag = general_tier_flag * level-id = general_level_idc Otherwise, if the tier-flag and level-id are derived from the profile_tier_level( ) syntax structure in an SPS or VPS NAL unit, and the bitstream does not contain the highest sublayer representation in the OLS corresponding to the bitstream, the following applies, with j being the value of the sprop-sublayer-id parameter: * tier-flag = general_tier_flag * level-id = sub_layer_level_idc[j] sub-profile-id: The value of the parameter is a comma-separated (',') list of data using base64 encoding (Section 4 of [RFC4648]) representation without "==" padding. When used to indicate properties of a bitstream, sub-profile-id is derived from each of the ptl_num_sub_profiles general_sub_profile_idc[i] syntax elements that apply to the bitstream in a profile_tier_level( ) syntax structure. interop-constraints: A base64 encoding (Section 4 of [RFC4648]) representation of the data that includes the ptl_frame_only_constraint_flag syntax element, the ptl_multilayer_enabled_flag syntax element, and the general_constraints_info( ) syntax structure that apply to the bitstream in an instance of the profile_tier_level( ) syntax structure. If the interop-constraints parameter is not present, the following MUST be inferred: * ptl_frame_only_constraint_flag = 1 * ptl_multilayer_enabled_flag = 0 * gci_present_flag in the general_constraints_info( ) syntax structure = 0 Using interop-constraints for capability exchange results in a requirement on any bitstream to be compliant with the interop- constraints. sprop-sublayer-id: This parameter MAY be used to indicate the highest allowed value of TID in the bitstream. When not present, the value of sprop- sublayer-id is inferred to be equal to 6. The value of sprop-sublayer-id MUST be in the range of 0 to 6, inclusive. sprop-ols-id: This parameter MAY be used to indicate the OLS that the bitstream applies to. When not present, the value of sprop-ols-id is inferred to be equal to TargetOlsIdx, as specified in Section 8.1.1 of [VVC]. If this optional parameter is present, sprop-vps MUST also be present or its content MUST be known a priori at the receiver. The value of sprop-ols-id MUST be in the range of 0 to 256, inclusive. | Informative note: VVC allows having up to 257 output layer | sets indicated in the VPS, as the number of output layer | sets minus 2 is indicated with a field of 8 bits. recv-sublayer-id: This parameter MAY be used to signal a receiver's choice of the offered or declared sublayer representations in sprop-vps and sprop-sps. The value of recv-sublayer-id indicates the TID of the highest sublayer that a receiver supports. When not present, the value of recv-sublayer-id is inferred to be equal to the value of the sprop-sublayer-id parameter in the SDP offer. The value of recv-sublayer-id MUST be in the range of 0 to 6, inclusive. recv-ols-id: This parameter MAY be used to signal a receiver's choice of the offered or declared output layer sets in sprop-vps. The value of recv-ols-id indicates the OLS index of the bitstream that a receiver supports. When not present, the value of recv-ols-id is inferred to be equal to the value of the sprop-ols-id parameter inferred from or indicated in the SDP offer. When present, the value of recv-ols-id must be included only when sprop-ols-id was received and must refer to an output layer set in the VPS that includes no layers other than all or a subset of the layers of the OLS referred to by sprop-ols-id. If this optional parameter is present, sprop-vps must have been received or its content must be known a priori at the receiver. The value of recv-ols-id MUST be in the range of 0 to 256, inclusive. max-recv-level-id: This parameter MAY be used to indicate the highest level a receiver supports. The value of max-recv-level-id MUST be in the range of 0 to 255, inclusive. When max-recv-level-id is not present, the value is inferred to be equal to level-id. max-recv-level-id MUST NOT be present when the highest level the receiver supports is not higher than the default level. sprop-dci: This parameter MAY be used to convey a decoding capability information NAL unit of the bitstream for out-of-band transmission. The parameter MAY also be used for capability exchange. The value of the parameter is a base64 encoding (Section 4 of [RFC4648]) representation of the decoding capability information NAL unit, as specified in Section 7.3.2.1 of [VVC]. sprop-vps: This parameter MAY be used to convey any video parameter set to the NAL unit of the bitstream for out-of-band transmission of video parameter sets. The parameter MAY also be used for capability exchange and to indicate substream characteristics (i.e., properties of output layer sets and sublayer representations, as defined in [VVC]). The value of the parameter is a comma-separated (',') list of base64 encoding (Section 4 of [RFC4648]) representations of the video parameter set NAL units, as specified in Section 7.3.2.3 of [VVC]. The sprop-vps parameter MAY contain one or more than one video parameter set NAL units. However, all other video parameter sets contained in the sprop-vps parameter MUST be consistent with the first video parameter set in the sprop-vps parameter. A video parameter set vpsB is said to be consistent with another video parameter set vpsA if the number of OLSs in vpsA and vpsB are the same and any decoder that conforms to the profile, tier, level, and constraints indicated by the data starting from the syntax element general_profile_idc to the syntax structure general_constraints_info(), inclusive, in the profile_tier_level( ) syntax structure corresponding to any OLS with index olsIdx in vpsA can decode any CVS(s) referencing vpsB when TargetOlsIdx is equal to olsIdx that conforms to the profile, tier, level, and constraints indicated by the data starting from the syntax element general_profile_idc to the syntax structure general_constraints_info(), inclusive, in the profile_tier_level( ) syntax structure corresponding to the OLS with index TargetOlsIdx in vpsB. sprop-sps: This parameter MAY be used to convey sequence parameter set NAL units of the bitstream for out-of-band transmission of sequence parameter sets. The value of the parameter is a comma-separated (',') list of base64 encoding (Section 4 of [RFC4648]) representations of the sequence parameter set NAL units, as specified in Section 7.3.2.4 of [VVC]. A sequence parameter set spsB is said to be consistent with another sequence parameter set spsA if any decoder that conforms to the profile, tier, level, and constraints indicated by the data starting from the syntax element general_profile_idc to the syntax structure general_constraints_info(), inclusive, in the profile_tier_level( ) syntax structure in spsA can decode any CLVS(s) referencing spsB that conforms to the profile, tier, level, and constraints indicated by the data starting from the syntax element general_profile_idc to the syntax structure general_constraints_info(), inclusive, in the profile_tier_level( ) syntax structure in spsB. sprop-pps: This parameter MAY be used to convey picture parameter set NAL units of the bitstream for out-of-band transmission of picture parameter sets. The value of the parameter is a comma-separated (',') list of base64 encoding (Section 4 of [RFC4648]) representations of the picture parameter set NAL units, as specified in Section 7.3.2.5 of [VVC]. sprop-sei: This parameter MAY be used to convey one or more SEI messages that describe bitstream characteristics. When present, a decoder can rely on the bitstream characteristics that are described in the SEI messages for the entire duration of the session, independently from the persistence scopes of the SEI messages, as specified in [VSEI]. The value of the parameter is a comma-separated (',') list of base64 encoding (Section 4 of [RFC4648]) representations of SEI NAL units, as specified in [VSEI]. | Informative note: Intentionally, no list of applicable or | inapplicable SEI messages is specified here. Conveying | certain SEI messages in sprop-sei may be sensible in some | application scenarios and meaningless in others. However, a | few examples are described below: | | In an environment where the bitstream was created from film- | based source material, and no splicing is going to occur | during the lifetime of the session, the film grain | characteristics SEI message is likely meaningful, and | sending it in sprop-sei, rather than in the bitstream at | each entry point, may help with saving bits and allows one | to configure the renderer only once, avoiding unwanted | artifacts. | | Examples for SEI messages that would be meaningless to be | conveyed in sprop-sei include the decoded picture hash SEI | message (it is close to impossible that all decoded pictures | have the same hashtag) or the filler payload SEI message (as | there is no point in just having more bits in SDP). max-lsr: The max-lsr MAY be used to signal the capabilities of a receiver implementation and MUST NOT be used for any other purpose. The value of max-lsr is an integer indicating the maximum processing rate in units of luma samples per second. The max-lsr parameter signals that the receiver is capable of decoding video at a higher rate than is required by the highest level. | Informative note: When the OPTIONAL media type parameters | are used to signal the properties of a bitstream, and max- | lsr is not present, the values of tier-flag, profile-id, | sub-profile-id, interop-constraints, and level-id must | always be such that the bitstream complies fully with the | specified profile, sub-profile, tier, level, and interop- | constraints. When max-lsr is signaled, the receiver MUST be able to decode bitstreams that conform to the highest level, with the exception that the MaxLumaSr value in Table A.3 of [VVC] for the highest level is replaced with the value of max-lsr. Senders MAY use this knowledge to send pictures of a given size at a higher picture rate than is indicated in the highest level. When not present, the value of max-lsr is inferred to be equal to the value of MaxLumaSr given in Table A.3 of [VVC] for the highest level. The value of max-lsr MUST be in the range of MaxLumaSr to 16 * MaxLumaSr, inclusive, where MaxLumaSr is given in Table A.3 of [VVC] for the highest level. max-fps: The value of max-fps is an integer indicating the maximum picture rate in units of pictures per 100 seconds that can be effectively processed by the receiver. The max-fps parameter MAY be used to signal that the receiver has a constraint in that it is not capable of processing video effectively at the full picture rate that is implied by the highest level and, when present, max-lsr. The value of max-fps is not necessarily the picture rate at which the maximum picture size can be sent; it constitutes a constraint on maximum picture rate for all resolutions. | Informative note: The max-fps parameter is semantically | different from max-lsr in that max-fps is used to signal a | constraint, lowering the maximum picture rate from what is | implied by other parameters. The encoder MUST use a picture rate equal to or less than this value. In cases where the max-fps parameter is absent, the encoder is free to choose any picture rate according to the highest level and any signaled optional parameters. The value of max-fps MUST be smaller than or equal to the full picture rate that is implied by the highest level and, when present, max-lsr. sprop-max-don-diff: If there is no NAL unit naluA that is followed in transmission order by any NAL unit preceding naluA in decoding order (i.e., the transmission order of the NAL units is the same as the decoding order), the value of this parameter MUST be equal to 0. Otherwise, this parameter specifies the maximum absolute difference between the decoding order number (i.e., AbsDon) values of any two NAL units naluA and naluB, where naluA follows naluB in decoding order and precedes naluB in transmission order. The value of sprop-max-don-diff MUST be an integer in the range of 0 to 32767, inclusive. When not present, the value of sprop-max-don-diff is inferred to be equal to 0. sprop-depack-buf-bytes: This parameter signals the required size of the de-packetization buffer in units of bytes. The value of the parameter MUST be greater than or equal to the maximum buffer occupancy (in units of bytes) of the de-packetization buffer, as specified in Section 6. The value of sprop-depack-buf-bytes MUST be an integer in the range of 0 to 4294967295, inclusive. When sprop-max-don-diff is present and greater than 0, this parameter MUST be present and the value MUST be greater than 0. When not present, the value of sprop-depack-buf-bytes is inferred to be equal to 0. | Informative note: The value of sprop-depack-buf-bytes | indicates the required size of the de-packetization buffer | only. When network jitter can occur, an appropriately sized | jitter buffer has to be available as well. depack-buf-cap: This parameter signals the capabilities of a receiver implementation and indicates the amount of de-packetization buffer space in units of bytes that the receiver has available for reconstructing the NAL unit decoding order from NAL units carried in the RTP stream. A receiver is able to handle any RTP stream for which the value of the sprop-depack-buf-bytes parameter is smaller than or equal to this parameter. When not present, the value of depack-buf-cap is inferred to be equal to 4294967295. The value of depack-buf-cap MUST be an integer in the range of 1 to 4294967295, inclusive. | Informative note: depack-buf-cap indicates the maximum | possible size of the de-packetization buffer of the receiver | only, without allowing for network jitter. 7.3. SDP Parameters The receiver MUST ignore any parameter unspecified in this memo. 7.3.1. Mapping of Payload Type Parameters to SDP The media type video/H266 string is mapped to fields in the Session Description Protocol (SDP) [RFC8866] as follows: * The media name in the "m=" line of SDP MUST be video. * The encoding name in the "a=rtpmap" line of SDP MUST be H266 (the media subtype). * The clock rate in the "a=rtpmap" line MUST be 90000. * The OPTIONAL parameters profile-id, tier-flag, sub-profile-id, interop-constraints, level-id, sprop-sublayer-id, sprop-ols-id, recv-sublayer-id, recv-ols-id, max-recv-level-id, max-lsr, max- fps, sprop-max-don-diff, sprop-depack-buf-bytes, and depack-buf- cap, when present, MUST be included in the "a=fmtp" line of SDP. The fmtp line is expressed as a media type string, in the form of a semicolon-separated list of parameter=value pairs. * The OPTIONAL parameters sprop-vps, sprop-sps, sprop-pps, sprop- sei, and sprop-dci, when present, MUST be included in the "a=fmtp" line of SDP or conveyed using the "fmtp" source attribute as specified in Section 6.3 of [RFC5576]. For a particular media format (i.e., RTP payload type), sprop-vps, sprop-sps, sprop-pps, sprop-sei, or sprop-dci MUST NOT be both included in the "a=fmtp" line of SDP and conveyed using the "fmtp" source attribute. When included in the "a=fmtp" line of SDP, those parameters are expressed as a media type string, in the form of a semicolon- separated list of parameter=value pairs. When conveyed in the "a=fmtp" line of SDP for a particular payload type, the parameters sprop-vps, sprop-sps, sprop-pps, sprop-sei, and sprop-dci MUST be applied to each SSRC with the payload type. When conveyed using the "fmtp" source attribute, these parameters are only associated with the given source and payload type as parts of the "fmtp" source attribute. | Informative note: Conveyance of sprop-vps, sprop-sps, and | sprop-pps using the "fmtp" source attribute allows for out-of- | band transport of parameter sets in topologies like Topo-Video- | switch-MCU, as specified in [RFC7667]. A general usage of media representation in SDP is as follows: m=video 49170 RTP/AVP 98 a=rtpmap:98 H266/90000 a=fmtp:98 profile-id=1; sprop-vps=