Network Working Group H. Prafullchandra
Request for Comments: 2875 Critical Path Inc
Category: Standards Track J. Schaad
July 2000
Diffie-Hellman Proof-of-Possession Algorithms
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document describes two methods for producing an integrity check
value from a Diffie-Hellman key pair. This behavior is needed for
such operations as creating the signature of a PKCS #10 certification
request. These algorithms are designed to provide a proof-of-
possession rather than general purpose signing.
1. Introduction
PKCS #10 [RFC2314] defines a syntax for certification requests. It
assumes that the public key being requested for certification
corresponds to an algorithm that is capable of signing/encrypting.
Diffie-Hellman (DH) is a key agreement algorithm and as such cannot
be directly used for signing or encryption.
This document describes two new proof-of-possession algorithms using
the Diffie-Hellman key agreement process to provide a shared secret
as the basis of an integrity check value. In the first algorithm,
the value is constructed for a specific recipient/verifier by using a
public key of that verifier. In the second algorithm, the value is
constructed for arbitrary verifiers.
Prafullchandra & Schaad Standards Track [Page 1]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
2. Terminology
The following definitions will be used in this document
DH certificate = a certificate whose SubjectPublicKey is a DH public
value and is signed with any signature algorithm (e.g. RSA or DSA).
3. Static DH Proof-of-Possession Process
The steps for creating a DH POP are:
1. An entity (E) chooses the group parameters for a DH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process.
A certificate with the correct group parameters has to be
available. Let these common DH parameters be g and p; and let
this DH key-pair be known as the Recipient key pair (Rpub and
Rpriv).
Rpub = g^x mod p (where x=Rpriv, the private DH value and
^ denotes exponentiation)
2. The entity generates a DH public/private key-pair using the
parameters from step 1.
For an entity E:
Epriv = DH private value = y
Epub = DH public value = g^y mod p
3. The POP computation process will then consist of:
a) The value to be signed is obtained. (For a RFC2314 object, the
value is the DER encoded certificationRequestInfo field
represented as an octet string.) This will be the `text'
referred to in [RFC2104], the data to which HMAC-SHA1 is
applied.
b) A shared DH secret is computed, as follows,
shared secret = ZZ = g^xy mod p
Prafullchandra & Schaad Standards Track [Page 2]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
[This is done by the entity E as Rpub^y and by the Recipient
as Epub^x, where Rpub is retrieved from the Recipient's DH
certificate (or is the one that was locally generated by the
Entity) and Epub is retrieved from the actual certification
request.]
c) A temporary key K is derived from the shared secret ZZ as
follows:
K = SHA1(LeadingInfo | ZZ | TrailingInfo),
where "|" means concatenation.
LeadingInfo ::= Subject Distinguished Name from certificate
TrailingInfo ::= Issuer Distinguished Name from certificate
d) Compute HMAC-SHA1 over the data `text' as per [RFC2104] as:
SHA1(K XOR opad, SHA1(K XOR ipad, text))
where,
opad (outer pad) = the byte 0x36 repeated 64 times and
ipad (inner pad) = the byte 0x5C repeated 64 times.
Namely,
(1) Append zeros to the end of K to create a 64 byte string
(e.g., if K is of length 16 bytes it will be appended
with 48 zero bytes 0x00).
(2) XOR (bitwise exclusive-OR) the 64 byte string computed
in step (1) with ipad.
(3) Append the data stream `text' to the 64 byte string
resulting from step (2).
(4) Apply SHA1 to the stream generated in step (3).
(5) XOR (bitwise exclusive-OR) the 64 byte string computed
in step (1) with opad.
(6) Append the SHA1 result from step (4) to the 64 byte
string resulting from step (5).
(7) Apply SHA1 to the stream generated in step (6) and
output the result.
Sample code is also provided in [RFC2104].
e) The output of (d) is encoded as a BIT STRING (the Signature
value).
Prafullchandra & Schaad Standards Track [Page 3]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
The POP verification process requires the Recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match then
the following can be concluded:
a) The Entity possesses the private key corresponding to the
public key in the certification request because it needed the
private key to calculate the shared secret; and
b) Only the Recipient that the entity sent the request to could
actually verify the request because they would require their
own private key to compute the same shared secret. In the case
where the recipient is a Certification Authority, this
protects the Entity from rogue CAs.
ASN Encoding
The ASN.1 structures associated with the static Diffie-Hellman POP
algorithm are:
id-dhPop-static-HMAC-SHA1 OBJECT IDENTIFIER ::= { id-pkix
id-alg(6) 3}
DhPopStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
issuerAndSerial is the issuer name and serial number of the
certificate from which the public key was obtained. The
issuerAndSerial field is omitted if the public key did not come
from a certificate.
hashValue contains the result of the SHA-1 HMAC operation in step
3d.
DhPopStatic is encoded as a BIT STRING and is the signature value
(i.e. encodes the above sequence instead of the raw output from 3d).
4. Discrete Logarithm Signature
The use of a single set of parameters for an entire public key
infrastructure allows all keys in the group to be attacked together.
For this reason we need to create a proof of possession for Diffie-
Hellman keys that does not require the use of a common set of
parameters.
Prafullchandra & Schaad Standards Track [Page 4]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
This POP is based on the Digital Signature Algorithm, but we have
removed the restrictions imposed by the [FIPS-186] standard. The use
of this method does impose some additional restrictions on the set of
keys that may be used, however if the key generation algorithm
documented in [DH-X9.42] is used the required restrictions are met.
The additional restrictions are the requirement for the existence of
a q parameter. Adding the q parameter is generally accepted as a good
practice as it allows for checking of small group attacks.
The following definitions are used in the rest of this section:
p is a large prime
g = h(p-1)/q mod p ,
where h is any integer 1 < h < p-1 such that h(p-1) mod q > 1
(g has order q mod p)
q is a large prime
j is a large integer such that p = qj + 1
x is a randomly or pseudo-randomly generated integer with
1 < x < q
y = g^x mod p
Note: These definitions match the ones in [DH-X9.42].
4.1 Expanding the Digest Value
Besides the addition of a q parameter, [FIPS-186] also imposes size
restrictions on the parameters. The length of q must be 160-bits
(matching output of the SHA-1 digest algorithm) and length of p must
be 1024-bits. The size restriction on p is eliminated in this
document, but the size restriction on q is replaced with the
requirement that q must be at least 160-bits. (The size restriction
on q is identical with that in [DH-X9.42].)
Given that there is not a random length-hashing algorithm, a hash
value of the message will need to be derived such that the hash is in
the range from 0 to q-1. If the length of q is greater than 160-bits
then a method must be provided to expand the hash length.
The method for expanding the digest value used in this section does
not add any additional security beyond the 160-bits provided by SHA-
1. The value being signed is increased mainly to enhance the
difficulty of reversing the signature process.
Prafullchandra & Schaad Standards Track [Page 5]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
This algorithm produces m the value to be signed.
Let L = the size of q (i.e. 2^L <= q < 2^(L+1)). Let M be the
original message to be signed.
1. Compute d = SHA-1(M), the SHA-1 digest of the original message.
2. If L == 160 then m = d.
3. If L > 160 then follow steps (a) through (d) below.
a) Set n = L / 160, where / represents integer division,
consequently, if L = 200, n = 1.
b) Set m = d, the initial computed digest value.
c) For i = 0 to n - 1
m = m | SHA(m), where "|" means concatenation.
d) m = LEFTMOST(m, L-1), where LEFTMOST returns the L-1 left most
bits of m.
Thus the final result of the process meets the criteria that 0 <= m <
q.
4.2 Signature Computation Algorithm
The signature algorithm produces the pair of values (r, s), which is
the signature. The signature is computed as follows:
Given m, the value to be signed, as well as the parameters defined
earlier in section 5.
1. Generate a random or pseudorandom integer k, such that 0 < k^-1 <
q.
2. Compute r = (g^k mod p) mod q.
3. If r is zero, repeat from step 1.
4. Compute s = (k^-1 (m + xr)) mod q.
5. If s is zero, repeat from step 1.
4.3 Signature Verification Algorithm
The signature verification process is far more complicated than is
normal for the Digital Signature Algorithm, as some assumptions about
the validity of parameters cannot be taken for granted.
Prafullchandra & Schaad Standards Track [Page 6]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Given a message m to be validated, the signature value pair (r, s)
and the parameters for the key.
1. Perform a strong verification that p is a prime number.
2. Perform a strong verification that q is a prime number.
3. Verify that q is a factor of p-1, if any of the above checks fail
then the signature cannot be verified and must be considered a
failure.
4. Verify that r and s are in the range [1, q-1].
5. Compute w = (s^-1) mod q.
6. Compute u1 = m*w mod q.
7. Compute u2 = r*w mod q.
8. Compute v = ((g^u1 * y^u2) mod p) mod q.
9. Compare v and r, if they are the same then the signature verified
correctly.
4.4 ASN Encoding
The signature is encoded using
id-alg-dhPOP OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}
The parameters for id-alg-dhPOP are encoded as DomainParameters
(imported from [PROFILE]). The parameters may be omitted in the
signature, as they must exist in the associated key request.
The signature value pair r and s are encoded using Dss-Sig-Value
(imported from [PROFILE]).
5. Security Considerations
In the static DH POP algorithm, an appropriate value can be produced
by either party. Thus this algorithm only provides integrity and not
origination service. The Discrete Logarithm algorithm provides both
integrity checking and origination checking.
Prafullchandra & Schaad Standards Track [Page 7]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
All the security in this system is provided by the secrecy of the
private keying material. If either sender or recipient private keys
are disclosed, all messages sent or received using that key are
compromised. Similarly, loss of the private key results in an
inability to read messages sent using that key.
Selection of parameters can be of paramount importance. In the
selection of parameters one must take into account the
community/group of entities that one wishes to be able to communicate
with. In choosing a set of parameters one must also be sure to avoid
small groups. [FIPS-186] Appendixes 2 and 3 contain information on
the selection of parameters. The practices outlined in this document
will lead to better selection of parameters.
6. References
[FIPS-186] Federal Information Processing Standards Publication
(FIPS PUB) 186, "Digital Signature Standard", 1994 May
19.
[RFC2314] Kaliski, B., "PKCS #10: Certification Request Syntax
v1.5", RFC 2314, October 1997.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, February
1997.
[PROFILE] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
X.509 Public Key Infrastructure: Certificate and CRL
Profile", RFC 2459, January 1999.
[DH-X9.42] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
2631, June 1999.
7. Authors' Addresses
Hemma Prafullchandra
Critical Path Inc.
5150 El Camino Real, #A-32
Los Altos, CA 94022
Phone: (640) 694-6812
EMail: hemma@cp.net
Jim Schaad
EMail: jimsch@exmsft.com
Prafullchandra & Schaad Standards Track [Page 8]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Appendix A. ASN.1 Module
DH-Sign DEFINITIONS IMPLICIT TAGS ::=
BEGIN
--EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
IMPORTS
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
modules(0) cms(1) }
Dss-Sig-Value, DomainParameters
FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit-88(1)};
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}
DhSigStatic ::= SEQUENCE {
IssuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
id-alg-dh-pop OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}
END
Prafullchandra & Schaad Standards Track [Page 9]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Appendix B. Example of Static DH Proof-of-Possession
The following example follows the steps described earlier in section
3.
Step 1: Establishing common Diffie-Hellman parameters. Assume the
parameters are as in the DER encoded certificate. The certificate
contains a DH public key signed by a CA with a DSA signing key.
0 30 939: SEQUENCE {
4 30 872: SEQUENCE {
8 A0 3: [0] {
10 02 1: INTEGER 2
: }
13 02 6: INTEGER
: 00 DA 39 B6 E2 CB
21 30 11: SEQUENCE {
23 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
32 05 0: NULL
: }
34 30 72: SEQUENCE {
36 31 11: SET {
38 30 9: SEQUENCE {
40 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
45 13 2: PrintableString 'US'
: }
: }
49 31 17: SET {
51 30 15: SEQUENCE {
53 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
58 13 8: PrintableString 'XETI Inc'
: }
: }
68 31 16: SET {
70 30 14: SEQUENCE {
72 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
77 13 7: PrintableString 'Testing'
: }
: }
86 31 20: SET {
88 30 18: SEQUENCE {
90 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
95 13 11: PrintableString 'Root DSA CA'
: }
: }
: }
108 30 30: SEQUENCE {
Prafullchandra & Schaad Standards Track [Page 10]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
110 17 13: UTCTime '990914010557Z'
125 17 13: UTCTime '991113010557Z'
: }
140 30 70: SEQUENCE {
142 31 11: SET {
144 30 9: SEQUENCE {
146 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
151 13 2: PrintableString 'US'
: }
: }
155 31 17: SET {
157 30 15: SEQUENCE {
159 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
164 13 8: PrintableString 'XETI Inc'
: }
: }
174 31 16: SET {
176 30 14: SEQUENCE {
178 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
183 13 7: PrintableString 'Testing'
: }
: }
192 31 18: SET {
194 30 16: SEQUENCE {
196 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
201 13 9: PrintableString 'DH TestCA'
: }
: }
: }
212 30 577: SEQUENCE {
216 30 438: SEQUENCE {
220 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
229 30 425: SEQUENCE {
233 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
365 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
Prafullchandra & Schaad Standards Track [Page 11]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
496 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
531 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
630 30 26: SEQUENCE {
632 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
655 02 1: INTEGER 55
: }
: }
: }
658 03 132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
793 A3 85: [3] {
795 30 83: SEQUENCE {
797 30 29: SEQUENCE {
799 06 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29
14)
804 04 22: OCTET STRING
: 04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42
: E5 AC D3 B4 88 78
: }
828 30 34: SEQUENCE {
830 06 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)
Prafullchandra & Schaad Standards Track [Page 12]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
835 01 1: BOOLEAN TRUE
838 04 24: OCTET STRING
: 30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9
: B7 09 E5 7B 06 E3 68 AA
: }
864 30 14: SEQUENCE {
866 06 3: OBJECT IDENTIFIER keyUsage (2 5 29 15)
871 01 1: BOOLEAN TRUE
874 04 4: OCTET STRING
: 03 02 03 08
: }
: }
: }
: }
880 30 11: SEQUENCE {
882 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
891 05 0: NULL
: }
893 03 48: BIT STRING 0 unused bits
: 30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC
: 06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83
: 58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A
: }
Step 2. End Entity/User generates a Diffie-Hellman key-pair using the
parameters from the CA certificate.
EE DH public key: SunJCE Diffie-Hellman Public Key:
Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE
FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8
A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A
0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C
DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A
93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC
D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33
62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8
EE DH private key:
X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00
86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3
Step 3. Compute K and the signature.
LeadingInfo: DER encoded Subject/Requestor DN (as in the generated
Certificate Signing Request)
Prafullchandra & Schaad Standards Track [Page 13]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
30 4E 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 1A 30 18 06 03 55 04 03 13 11 50
4B 49 58 20 45 78 61 6D 70 6C 65 20 55 73 65 72
TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate
described in step 1)
30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44
48 20 54 65 73 74 43 41
K:
F4 D7 BB 6C C7 2D 21 7F 1C 38 F7 DA 74 2D 51 AD
14 40 66 75
TBS: the ôtextö for computing the SHA-1 HMAC.
30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55
04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55
04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06
03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70
6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06
07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87
53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5
0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6
1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31
7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69
D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33
51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31
15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E
DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC
FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA
71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4
4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE
Prafullchandra & Schaad Standards Track [Page 14]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F
0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F
86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68
FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C
5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5
3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4
98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85
04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96
27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD
2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50
C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78
2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3
EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B
6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F
11 44 8C C1 8D A2 11 9E 53 EF B2 E8
Certification Request:
0 30 793: SEQUENCE {
4 30 664: SEQUENCE {
8 02 1: INTEGER 0
11 30 78: SEQUENCE {
13 31 11: SET {
15 30 9: SEQUENCE {
17 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
22 13 2: PrintableString 'US'
: }
: }
26 31 17: SET {
28 30 15: SEQUENCE {
30 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
35 13 8: PrintableString 'XETI Inc'
: }
: }
45 31 16: SET {
47 30 14: SEQUENCE {
49 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
54 13 7: PrintableString 'Testing'
: }
: }
63 31 26: SET {
65 30 24: SEQUENCE {
67 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
72 13 17: PrintableString 'PKIX Example User'
: }
: }
Prafullchandra & Schaad Standards Track [Page 15]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
: }
91 30 577: SEQUENCE {
95 30 438: SEQUENCE {
99 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
108 30 425: SEQUENCE {
112 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
244 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
375 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
410 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
509 30 26: SEQUENCE {
511 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E
DB
: 09 E4 98 34
534 02 1: INTEGER 55
: }
: }
: }
537 03 132: BIT STRING 0 unused bits
: 02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8
: 93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18
Prafullchandra & Schaad Standards Track [Page 16]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
: FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC
: 33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A
: BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E
: 0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8
: 29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E
: 7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53
: EF B2 E8
: }
: }
672 30 12: SEQUENCE {
674 06 8: OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)
684 05 0: NULL
: }
686 03 109: BIT STRING 0 unused bits
: 30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
: 02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
: 54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13
: 07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04
: 03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06
: 00 DA 39 B6 E2 CB 04 14 1B 17 AD 4E 65 86 1A 6C
: 7C 85 FA F7 95 DE 48 93 C5 9D C5 24
: }
Signature verification requires CAÆs private key, the CA certificate
and the generated Certification Request.
CA DH private key:
x: 3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Prafullchandra & Schaad Standards Track [Page 17]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Appendix C. Example of Discrete Log Signature
Step 1. Generate a Diffie-Hellman Key with length of q being 256-
bits.
p:
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
q:
E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB
g:
26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
j:
A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92
y:
5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A
seed:
Prafullchandra & Schaad Standards Track [Page 18]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
09 E4 98 34
C:
00000037
x:
3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Step 2. Form the value to be signed and hash with SHA1. The result
of the hash for this example is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c
Step 3. The hash value needs to be expanded since |q| = 256. This
is done by hashing the hash with SHA1 and appending it to the
original hash. The value after this step is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
6f 26 3b f7 1c a3 b2 cb
Next the first 255 bits of this value are taken to be the resulting
"hash" value. Note in this case a shift of one bit right is done
since the result is to be treated as an integer:
2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56
Step 4. The signature value is computed. In this case you get the
values
R:
A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B
S:
59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1
The encoded signature values is then:
30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
75 81 F7 EC 9E BE A1
Prafullchandra & Schaad Standards Track [Page 19]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Result:
30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72
8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
8a b4 df bb 88 bc
Prafullchandra & Schaad Standards Track [Page 20]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Decoded Version of result:
0 30 707: SEQUENCE {
4 30 615: SEQUENCE {
8 02 1: INTEGER 0
11 30 27: SEQUENCE {
13 31 25: SET {
15 30 23: SEQUENCE {
17 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
22 13 16: PrintableString 'IETF PKIX SAMPLE'
: }
: }
: }
40 30 577: SEQUENCE {
44 30 438: SEQUENCE {
48 06 7: OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
57 30 425: SEQUENCE {
61 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
193 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
324 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
359 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
Prafullchandra & Schaad Standards Track [Page 21]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
: 92
458 30 26: SEQUENCE {
460 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
483 02 1: INTEGER 55
: }
: }
: }
486 03 132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
621 A0 0: [0]
: }
623 30 12: SEQUENCE {
625 06 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
635 05 0: NULL
: }
637 03 72: BIT STRING 0 unused bits
: 30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
: F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
: 5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
: 55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
: 75 81 F7 EC 9E BE A1
: }
Prafullchandra & Schaad Standards Track [Page 22]
RFC 2875 Diffie-Hellman Proof-of-Possession Algorithms July 2000
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Prafullchandra & Schaad Standards Track [Page 23]